Doing more with less: Training large DNN models on commodity servers for the masses

Youjie LiAmar PhanishayeeDerek MurrayNam Sung KimUIUCMicrosoft ResearchMicrosoftUIUC

HotOS 2021

DNN model size are growing exponentially!

DNN model size are growing exponentially!

128 GB footprint for training GPT2*

Breakdown	Mem Usage	Percent	
Weight	3 GB	2.3%	
Gradient	3 GB	2.3%	
Optimizer	18 GB	14.1%	
Stashing	60 GB	46.9%	
Buffer	6 GB	4.7%	
Other	38 GB	29.7%	
Total	128 GB	100%	

*[GPT2, arXiv'19][Zero, SC'20]

DNN model size are growing exponentially!

128 GB footprint for training GPT2*

Breakdown	Mem Usage	Percent	
Weight	3 GB	2.3%	
Gradient	3 GB	2.3%	
Optimizer	18 GB	14.1%	
Stashing	60 GB	46.9%	
Buffer	6 GB	4.7%	
Other	38 GB	29.7%	
Total	128 GB	100%	

Weights are only a fraction of total memory usage!

*[GPT2, arXiv'19][Zero, SC'20]

Now, only "elites" can train large models

The main challenge:

training memory footprint > accelerator memory capacity

Promising technique #1: *Single-GPU Memory Virtualization**

*[vDNN, MICRO'16] [LMS, SysML'18] [SwpAdv, ASPLOS'20] [Sentinel, HPCA'21]

Excessive overhead: Repeated swaps across data batches

Excessive overhead: Repeated swaps across data batches

Time

Excessive overhead: Repeated swaps across data batches

Swapping bottleneck: All GPU swaps via a root link

Swapping bottleneck: All GPU swaps via a root link

Intra-server Interconnects

Promising technique #2: *Model/Pipeline Parallel Training*

- Model-parallel training [Megatron, arXiv'19]
- **Pipeline-parallel training** [GPipe, NeurIPS'19] [PipeDream, SOSP'19]

Promising technique #2: Model/Pipeline Parallel Training

- Model-parallel training [Megatron, arXiv'19]
- **Pipeline-parallel training** [GPipe, NeurIPS'19] [PipeDream, SOSP'19]

Great for models that fit collective memory capacity :)

Quite often, on commodity servers:

training memory footprint > collective accelerator memory capacity

Quite often, on commodity servers:

training memory footprint > collective accelerator memory capacity

Quite often, on commodity servers:

training memory footprint > collective accelerator memory capacity

How to train large models on commodity servers? efficiently? -- Open questions

How about combine existing techniques?

How about combine existing techniques? -- It is still inefficient

How about combine existing techniques? -- It is still inefficient

- Excessive swap overhead
- CPU-GPU swap bottleneck
- Unbalance swaps

- Excessive swap overhead
- CPU-GPU swap bottleneck
- Unbalance swaps

\rightarrow The fundamental limitations in current ML frameworks

- Excessive swap overhead
- CPU-GPU swap bottleneck
- Unbalance swaps

\rightarrow The fundamental limitations in current ML frameworks

1. Coarse-Granularity Scheduling

(e.g., PyTorch schedules an entire model to compute the 1st data batch, before the 2nd data batch)

- Excessive swap overhead
- CPU-GPU swap bottleneck
- Unbalance swaps

\rightarrow The fundamental limitations in current ML frameworks

1. Coarse-Granularity Scheduling

(e.g., PyTorch schedules an entire model to compute the 1st data batch, before the 2nd data batch)

2. Early Binding to Fixed Devices

(e.g., in user's training scripts, bind the 1^{st} part of model to 1^{st} GPU and the 2^{nd} part to 2^{nd} GPU)

- Excessive swap overhead
- CPU-GPU swap bottleneck
- Unbalance swaps

\rightarrow The fundamental limitations in current ML frameworks

1. Coarse-Granularity Scheduling

(e.g., PyTorch schedules an entire model to compute the 1st data batch, before the 2nd data batch)

2. Early Binding to Fixed Devices

(e.g., in user's training scripts, bind the 1st part of model to 1st GPU and the 2nd part to 2nd GPU)

 \rightarrow Not flexible & poor resource utilization

Key Idea

• **Decompose** everything (data, model, operations) into small tasks

Key Idea

- **Decompose** everything (data, model, operations) into small tasks
- Schedule tasks at a fine granularity

Key Idea

- **Decompose** everything (data, model, operations) into small tasks
- Schedule tasks at a fine granularity
- Late-bind tasks' compute and their swaps onto hardware

Key Idea

- **Decompose** everything (data, model, operations) into small tasks
- Schedule tasks at a fine granularity
- Late-bind tasks' compute and their swaps onto hardware

Goal

• Maximize **system efficiency** for training large models

• Minimize memory swaps

(e.g., group tasks to reuse shared states in memory)

• Minimize memory swaps

(e.g., group tasks to reuse shared states in memory)

• Schedule tasks just-in-time

(e.g., *jit-schedule* a task before its input getting swap-out)

Minimize memory swaps

(e.g., group tasks to reuse shared states in memory)

• Schedule tasks just-in-time

(e.g., *jit-schedule* a task before its input getting swap-out)

• Swap over fast peer-to-peer links

(e.g., *move* CPU-GPU swaps to P2P transfers)

Minimize memory swaps

(e.g., group tasks to reuse shared states in memory)

• Schedule tasks just-in-time

(e.g., *jit-schedule* a task before its input getting swap-out)

• Swap over fast peer-to-peer links

(e.g., *move* CPU-GPU swaps to P2P transfers)

Balance load

(e.g., *pack* tasks for similar compute & swap loads)

Forward Pass	Backward Pass	Update
Microbatch Idx	Microbatch Idx	Laver Idv
Layer Idx	Layer Idx	Layeriux

More of Harmony in the paper :)

- Single-accelerator abstraction for multi-GPU training
- Virtualization of different parallel training techniques
- Analytical evaluation
- Multi-machine training
- Memory-performance trade-offs
- Feasibility for end-to-end training on modest deployments

Conclusion

- Large model training can also be for the "masses"!
- Large model training requires huge accelerator memory.
- Memory virtualization incurs excessive swap overhead.
- We advocate rethinking how ML frameworks schedule compute and move data for – *efficiently training large models on commodity servers*.

Backup Slides

Data-Parallelism with per-GPU memory virtualization

Setting: 4x GTX-1080Ti (11GB) + Bert-Large + Per-GPU batchsize=5 + PyTorch Data Parallel + IBM-LMS

Linearly increased swap volume plagues throughput (Reason: swap load across replicated models is proportional to GPU count)

* [LMS, SysML'18]

Pipeline-Parallel training with per-GPU memory virtualization

Setting: 4x GTX-1080Ti (11GB) + Bert-Large + MicrobatchSize 32+ PipeDream2BW + IBM-LMS

Unbalanced swap load across GPUs

→ The heaviest swap happens on GPU-0 while GPU2-3 has no swap issue

- \rightarrow Pipeline is always synchronous across all GPUs
- \rightarrow The system throughput is bottlenecked by GPU-0

* [LMS, SysML'18]

Overview

Analyzing the swap load

(c) Swapping of weights for layer *Lj* in "Harmony DP."

Analytical comparison

Different Approaches		DP with Per- GPU Swap	Harmony DP (vDP)	PP with Per- GPU Swap	Harmony PP (vPP)	
Total Comm. Volume of One Data — Batch	Swap Volume (In + Out)	W	$(4M+2N) \times$	$3N \times$	$(4M + 2) \times$	3 ×
		dW	$(2M+2N) \times$	0 ×	$(2M+2) \times$	0 ×
		K	$2N \times$	$2N \times$	2 ×	2 ×
		X	$2M \times$	$2M \times$	$2M \times$	$2M \times$
		Y & dX	-	2 <i>M</i> ×	-	-
	P2P Volume	AllReduce <i>dW</i>	$N \times$	$N \times$	-	-
		Send $Y \& dX$	-	-	$\left(rac{N-1}{R} ight)M imes$	M ×
Balanced Memory Usage (CPU + GPU)		Yes	Yes	No (Stashed X across GPUs is 1 : 2 : : N)	Yes	

Feasibility for end-to-end training on commodity GPU servers

End-to-End Training Timeline

1. Development & Debugging

2. Pre-training from Scratch

3. Fine-tuning to Best Accuracy

Training FLOPs: up-to 10¹⁹ or Training Time: several hours/days Training FLOPs: beyond 10²³ or Training Time: months/years **Training FLOPs: up-to 10¹⁹** or **Training Time: several hours/days**

Commodity machine(s) with only GTX GPU

Estimated Training Time

Model	Pre-training		Fine-Tuning Wikitext-103 for 5 epoch			Fine-Tuning GLUE for 3 epoch		
	# FLOP	Single 1080Ti Time (days)	# Tokens	# FLOP	Single 1080Ti Time (days)	# Tokens	# FLOP	Single 1080Ti Time (days)
BERT-Large	5.33E+20	581	5.1E+08	1.24E+18	1	6.09E+08	1.49E+18	2
GPT-2	2.38E+21	2,592	5.1E+08	6.30E+18	7	6.09E+08	7.56E+18	8
T5-11B	3.30E+22	36,002	5.1E+08	1.35E+19	15	6.09E+08	1.62E+19	18
GPT-3	3.14E+23	342,564	5.1E+08	7.16E+20	781	6.09E+08	8.59E+20	937