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DNN model size are growing exponentially!
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128 GB footprint for training GPT2*
Breakdown Mem Usage Percent
Weight 3 GB 2.3%
Gradient 3 GB 2.3%
Optimizer 18 GB 14.1%
Stashing 60 GB 46.9%
Buffer 6 GB 4.7%
Other 38 GB 29.7%
Total 128 GB 100%
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128 GB footprint for training GPT2*

Weights are only a fraction of 
total memory usage!

Breakdown Mem Usage Percent
Weight 3 GB 2.3%
Gradient 3 GB 2.3%
Optimizer 18 GB 14.1%
Stashing 60 GB 46.9%
Buffer 6 GB 4.7%
Other 38 GB 29.7%
Total 128 GB 100%
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The main challenge:
training memory footprint  > accelerator memory capacity

128 GB footprint for training GPT2

GPU

16 GB V100



Promising technique #1: Single-GPU Memory Virtualization*

CPU Host Memory

GPU

Memory Swap *[vDNN, MICRO’16]
[LMS, SysML’18]
[SwpAdv, ASPLOS’20]
[Sentinel, HPCA’21]



Excessive overhead: Repeated swaps across data batches
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Swaps of model states

#2 Data Batch

Repeated swaps 
of model states

GPUGPU



Swapping bottleneck: All GPU swaps via a root link
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Swapping bottleneck: All GPU swaps via a root link

Swap

Host Memory
CPU

PCIe
Switch

Bottleneck

Intra-server Interconnects

GPU GPU GPU GPU… …
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• Model-parallel training [Megatron, arXiv’19]
• Pipeline-parallel training [GPipe, NeurIPS’19] [PipeDream, SOSP’19]
• Data-parallel training [Neurips’12]

Promising technique #2: Model/Pipeline Parallel Training



GPU GPU GPUGPU

• Model-parallel training [Megatron, arXiv’19]
• Pipeline-parallel training [GPipe, NeurIPS’19] [PipeDream, SOSP’19]
• Data-parallel training [Neurips’12]

Promising technique #2: Model/Pipeline Parallel Training

Great for models that fit collective memory capacity : )
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Quite often, on commodity servers:
training memory footprint  > collective accelerator memory capacity

GPU GPU

• Large Model Size
• Large Data Size
• Low-End GPUs
• Insufficient # of GPUs

How to train large models on commodity servers? efficiently?
-- Open questions
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How about combine existing techniques?
-- It is still inefficient

CPU Host Memory

Unbalanced swaps
Sync
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 The fundamental limitations in current ML frameworks
1. Coarse-Granularity Scheduling

(e.g., PyTorch schedules an entire model to compute the 1st data 
batch, before the 2nd data batch)

2. Early Binding to Fixed Devices
(e.g., in user’s training scripts, bind the 1st part of model to 1st GPU 
and the 2nd part to 2nd GPU)

 Not flexible & poor resource utilization

• Excessive swap overhead
• CPU-GPU swap bottleneck
• Unbalance swaps

These inefficiencies are hard to solve
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Our proposal – Harmony

Key Idea
• Decompose everything (data, model, operations) into small tasks
• Schedule tasks at a fine granularity
• Late-bind tasks’ compute and their swaps onto hardware

Goal
• Maximize system efficiency for training large models
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Four Principles
• Minimize memory swaps

(e.g., group tasks to reuse shared states in memory)
• Schedule tasks just-in-time

(e.g., jit-schedule a task before its input getting swap-out)
• Swap over fast peer-to-peer links

(e.g., move CPU-GPU swaps to P2P transfers)
• Balance load

(e.g., pack tasks for similar compute & swap loads)

CPU Host Memory 

Swap

Harmony
P2P

GPU GPU

A Data Batch D4D3D2 Model
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More of Harmony in the paper : )

o Single-accelerator abstraction for multi-GPU training

o Virtualization of different parallel training techniques

o Analytical evaluation

o Multi-machine training

o Memory-performance trade-offs

o Feasibility for end-to-end training on modest deployments



Conclusion
 Large model training can also be for the “masses”!

 Large model training requires huge accelerator memory.

 Memory virtualization incurs excessive swap overhead.

 We advocate rethinking how ML frameworks schedule compute and 

move data for – efficiently training large models on commodity servers.
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Data-Parallelism with per-GPU memory virtualization

*Setting: 4x GTX-1080Ti (11GB) + Bert-Large + Per-GPU batchsize=5 + PyTorch Data Parallel + IBM-LMS*  

Linearly increased swap volume plagues throughput
(Reason: swap load across replicated models is proportional to GPU count)

*  [LMS, SysML’18] 
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*Setting: 4x GTX-1080Ti (11GB) + Bert-Large + MicrobatchSize 32+ PipeDream2BW + IBM-LMS*  

Unbalanced swap load across GPUs
 The heaviest swap happens on GPU-0 while GPU2-3 has no swap issue
 Pipeline is always synchronous across all GPUs 

 The system throughput is bottlenecked by GPU-0

Pipeline-Parallel training with per-GPU memory virtualization

*  [LMS, SysML’18] 



A Data 
Batch ModelD4D3D2D

Task Decomposer

Task and Swap Scheduler

CPU

GPU
Swap

GPU
P2P

Message Passing & Shared Mem

Runtime

• Split model-wise ops into fine-grain ops
• Decouple ops and Unbind resources
• Split data into microbatches

• Group tasks to reuse swapped tensor
• JIT-schedule tasks to avoid unnecessary swaps
• Place tasks across GPUs to use P2P transfer
• Pack tasks to balance swap loads
• Setup task dependency

User

Harmony

Overview



Forward

Input 𝑿𝑿
Weight 𝑾𝑾

Output 𝒀𝒀
Stashed 𝑿𝑿
Weight 𝑾𝑾

Swap-In Swap-Out Backward

Output Grad 𝒅𝒅𝒅𝒅
Weight Grad 𝒅𝒅𝒅𝒅
Stashed Input 𝑿𝑿
Weight 𝑾𝑾

Input Grad 𝒅𝒅𝒅𝒅
Accumulated 𝒅𝒅𝑾𝑾′

Weight 𝑾𝑾

Update

Weight Grad 𝒅𝒅𝒅𝒅
Weight 𝑾𝑾
Optimizer State 𝑲𝑲

Reset 𝒅𝒅𝒅𝒅𝒅
Updated 𝑾𝑾𝑾
Updated 𝑲𝑲𝑲

(a) Swap model.

(c) Swapping of weights for layer 𝑳𝑳𝑳𝑳 in “Harmony DP.”

Time
GPU
CPU𝑾𝑾𝑳𝑳𝑳𝑳 𝑾𝑾𝑳𝑳𝑳𝑳 𝑾𝑾𝑾𝑳𝑳𝑳𝑳

… … … L L … … L L… L … …
𝒊𝒊 = 𝟏𝟏 𝒊𝒊 = 𝒎𝒎 𝒊𝒊 = 𝟏𝟏 𝒊𝒊 = 𝒎𝒎

(b) Swapping of weights for layer 𝑳𝑳𝑳𝑳 in “DP with per-GPU memory virtualization.”

L1 L2 … …L… L2 L1L … L1 L2 L… Time… … 

𝑾𝑾𝑳𝑳𝑳𝑳 𝑾𝑾𝑳𝑳𝑳𝑳

GPU
CPU

Repeat for 
microbatch
𝒊𝒊 = 𝟏𝟏…𝒎𝒎 𝑾𝑾𝑳𝑳𝑳𝑳 𝑾𝑾𝑾𝑳𝑳𝑳𝑳𝑾𝑾𝑳𝑳𝑳𝑳 𝑾𝑾𝑳𝑳𝑳𝑳

Analyzing the swap load



Different Approaches DP with Per-
GPU Swap

Harmony DP 
(vDP)

PP with Per-
GPU Swap

Harmony PP 
(vPP)

Total
Comm.
Volume
of One 
Data 
Batch

Swap 
Volume

(In + Out)

𝑊𝑊 𝟒𝟒𝟒𝟒 + 𝟐𝟐𝟐𝟐 × 𝟑𝟑𝟑𝟑 × 𝟒𝟒𝟒𝟒 + 𝟐𝟐 × 𝟑𝟑 ×
𝑑𝑑𝑑𝑑 𝟐𝟐𝟐𝟐 + 𝟐𝟐𝟐𝟐 × 𝟎𝟎 × 𝟐𝟐𝟐𝟐 + 𝟐𝟐 × 𝟎𝟎 ×
𝐾𝐾 𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐 × 𝟐𝟐 × 𝟐𝟐 ×
𝑋𝑋 𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐 × 𝟐𝟐𝟐𝟐 ×

𝑌𝑌 & 𝑑𝑑𝑑𝑑 - 𝟐𝟐𝟐𝟐 × - -

P2P 
Volume

AllReduce 𝑑𝑑𝑑𝑑 𝑵𝑵 × 𝑵𝑵 × - -

Send 𝑌𝑌 & 𝑑𝑑𝑑𝑑 - -
𝑵𝑵− 𝟏𝟏
𝑹𝑹

𝑴𝑴 × 𝑴𝑴 ×

Balanced Memory Usage 
(CPU + GPU) Yes Yes

No
(Stashed 𝑿𝑿 across

GPUs is 
𝟏𝟏 ∶ 𝟐𝟐 ∶ … ∶ 𝑵𝑵)

Yes

Analytical comparison



Feasibility for end-to-end training on commodity GPU servers
End-to-End Training Timeline 

1. Development & 
Debugging

2. Pre-training from 
Scratch

3. Fine-tuning to 
Best Accuracy

GPU
GPU

Large 
model

Commodity 
machine(s)
with only 
GTX GPU

Training FLOPs: up-to 𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏 or 
Training Time: several hours/days

GPU
GPU

Training FLOPs: up-to 𝟏𝟏𝟎𝟎𝟏𝟏𝟏𝟏 or 
Training Time: several hours/days

GPU
GPU

Training FLOPs: beyond 𝟏𝟏𝟎𝟎𝟐𝟐𝟐𝟐 or 
Training Time: months/years



Model
Pre-training Fine-Tuning Wikitext-103 for 5 epoch Fine-Tuning GLUE for 3 epoch

# FLOP Single 1080Ti 
Time (days) # Tokens # FLOP Single 1080Ti 

Time (days) # Tokens # FLOP Single 1080Ti 
Time (days)

BERT-Large 5.33E+20 581 5.1E+08 1.24E+18 1 6.09E+08 1.49E+18 2 

GPT-2 2.38E+21 2,592 5.1E+08 6.30E+18 7 6.09E+08 7.56E+18 8

T5-11B 3.30E+22 36,002 5.1E+08 1.35E+19 15 6.09E+08 1.62E+19 18

GPT-3 3.14E+23 342,564 5.1E+08 7.16E+20 781 6.09E+08 8.59E+20 937 

Estimated Training Time


